57书屋

第一百八十五章:证明霍奇猜想! (2/5)

挂满了悬铃果实的悬铃木。

    清晨的日出在墨蓝色的云霞里透亮,窗外金黄色和深绿色的树叶交织在一起,沉甸甸的悬铃果镶嵌其中。

    望着窗外的风景,徐川脸上挂着笑容。

    秋季,是丰收的季节。

    尽管针对霍奇猜想的研究并非如他预想中的那般一帆风顺,但对于最终的结果,他始终充满了信心。

    而两个月的时间过去,在霍奇猜想这片未知的海洋中,他终于找到了一片出现在眼前的海岸线。

    那是新大陆!

    望着窗外的风景,徐川面带笑容的转身回到了桌前。

    尽管霍奇猜想还未完美的解决,但他已经看到了那条海岸相交的地平线,看到了那座耸立在天际的新大陆。

    剩下的,就是努力的将自己的小船划过去了。

    .....

    拾起桌上的圆珠笔,徐川在此前未写完地方提笔继续:

    “......设 v是复射影空间中的一个代数簇, vˊ是 v的正则点组成的集合。 vˊ上相对于 fubini-study度量的 l?2-de rham上同调群与 v的交叉上同调群是同构的.....”

    “若 y是 x的定义在 k上余维数为 j的闭子代数簇,我们有标准映射:tr : h2(n?j)(y?k k, q`)(n? j)→ q`......这里(n? j)是 ?? q`(n? j)。

    这个映射与限制映射:h2(n?j)(x?k k, q`)(n? j)→ h2(n?j)(y, q`)(n? j)”

    “........”

    “根据 poincar′e对偶定理:hom(h2(n?j)(x?k k, q`)(n? j), q`)~= h2j (x?k k, q`)(j)......“

    .......

    时间一点一点的在他的笔下流逝,徐川全神贯注的将自己投入到了最后的突破上。

    最终,他手中的笔锋蓦然一转。

    “.....基于映射 tr、限制映射和 poincar′e,对偶定理都与 gal(k\/k)的作用相容,所以 gal(k\/k)在 y定义的上同调类上的作用也平凡。则 aj (x)是 h2j (x?k k, q`)(j)中由 x的余维数为 j的定义在 k上的闭子代数簇的上同调类生成的 q向量空间.......”

    “当 i≤n\/2时, ai (x)n ker(l?n?2i+1)上的二次型x→(?1)il?r?2i(x.x)是正定的。“

    “由此,可得,在非奇异复射影代数

本章未完,请点击下一页继续阅读

『加入书签,方便阅读』
推荐小说:
随亲爹入赘,我靠吃软饭稳坐团宠 认骨 主神游戏:疯批玩家篡改规 谍战1937:我能看到敌人好感度! 开局绑定诸天副本系统 边塞狂徒 神祇纪元 穿越乡野,糙汉夫君超宠爱 攻略任务暴露后,竹马变阴湿男鬼 重生70,和资本家大小姐过好日子
相关推荐:
末日万人嫌?爆单从摆摊开始 诸天之掌控天庭 异常收藏家 堡垒无限食物,隔壁女神绷不住了 雌性堕落后,全星际美男都吻上来